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ABSTRACT

A widely used observation space covariance localization method is shown to adversely affect satellite

radiance assimilation in ensemble Kalman filters (EnKFs) when compared to model space covariance lo-

calization. The two principal problems are that distance and location are not well defined for integrated

measurements, and that neighboring satellite channels typically have broad, overlapping weighting functions,

which produce true, nonzero correlations that localization in radiance space can incorrectly eliminate. The

limitations of the method are illustrated in a 1D conceptual model, consisting of three vertical levels and

a two-channel satellite instrument. A more realistic 1D model is subsequently tested, using the 30 vertical

levels from the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Advanced Mi-

crowave Sounding Unit A (AMSU-A) weighting functions for channels 6–11, and the observation error

variance and forecast error covariance from the NRL Atmospheric Variational Data Assimilation System

(NAVDAS). Analyses from EnKFs using radiance space localization are compared with analyses from raw

EnKFs, EnKFs using model space localization, and the optimal analyses using the NAVDAS forecast error

covariance as a proxy for the true forecast error covariance. As measured by mean analysis error variance

reduction, radiance space localization is inferior to model space localization for every ensemble size and

meaningful observation error variance tested. Furthermore, given as many satellite channels as vertical levels,

radiance space localization cannot recover the true temperature state with perfect observations, whereas

model space localization can.

1. Introduction

Ensemble Kalman filters (EnKFs) have shown great

promise for large-scale atmospheric data assimilation

(Evensen 1994; Keppenne 2000; Houtekamer and Mitchell

2001; Houtekamer and Mitchell 2005; Houtekamer et al.

2005). Because the number of ensemble members typi-

cally available for atmospheric data assimilation is in

the hundreds while the number of observations is sev-

eral orders of magnitude greater, the ensemble sample

covariance matrix is rank deficient, and spurious corre-

lations are inevitable. Both rank deficiency and spurious

correlations can lead to degraded analyses, and therefore

to degraded forecasts. One practical solution is localiza-

tion, which both increases the rank of the sample covari-

ance matrix and mitigates spurious correlations, resulting

in greatly improved analyses and forecasts (Houtekamer

and Mitchell 1998).

Localization can be performed in the horizontal, in

the vertical, and in time (and between variables). Lo-

calization schemes are typically distance based (an ex-

ception is the hierarchical filter; Anderson 2007), which

makes sense in physical space and time given our knowl-

edge of the spatial and temporal scales of physical and

dynamical processes in the atmosphere. Experimental

results (Hollingsworth and Lönnberg 1986) confirm the

expectation that forecast error covariances generally

diminish with horizontal and vertical distance for con-

ventional observations. Distance-based forecast error

covariance localization, typically implemented as a Schur

(elementwise) product of the raw ensemble covariance

matrix and some positive definite localization matrix,

works well both in the horizontal and for conventional

observations.

Vertical covariance localization for satellite radiances

is becoming more important as the number and type of

satellite observations increases much more rapidly than

conventional observations. Radiance space localization

is already being used in the operational data assimila-

tion system at Environment Canada for their ensemble
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forecasts, as well as in the ensemble square root filter

data assimilation system being considered for opera-

tional use at the National Centers for Environmental

Prediction (NCEP; J. Whitaker 2009, personal commu-

nication); therefore, an understanding of the benefits

and drawbacks of this type of localization is a critical

topic. For several reasons, specifying the vertical local-

ization for satellite radiances is less straightforward than

for other data types.

The vertical location of a satellite radiance is not well

defined because it is an integrated measure, sampling

different layers of the atmosphere. The satellite chan-

nels typically used in operational data assimilation have

weighting functions that overlap significantly, resulting

in correlated radiances in neighboring channels. Local-

ization ought to preserve these correct interchannel

correlations. Additionally, individual satellite weighting

functions are typically broad, covering a significant frac-

tion of the model atmosphere in the vertical, which

makes it difficult to define sufficiently broad localization

functions. For all of these reasons, one might expect that

distance-based localization in radiance space will have

some difficulty in extracting the maximum benefit from

satellite radiances. Although there are many aspects of

data assimilation (e.g., quality control, radiance bias

correction, etc.) that must be carefully designed and

implemented in order to see large, positive impact for

satellite radiances in both variational and EnKF con-

texts, we believe that one limiting factor for EnKFs may

be the localization of radiances in the vertical. [Opera-

tional three-dimensional (3D) and four-dimensional

variational data assimilation (4DVar) systems have seen

great benefit from the direct assimilation of satellite

radiances (Andersson et al. 1994; Kelly 1997; Derber

and Wu 1998; English et al. 2000; Eyre et al. 2000; Baker

and Campbell 2005), particularly those from microwave

temperature sounders such as the Advanced Microwave

Sounding Unit-A (AMSU-A).] Understanding some of

the limitations of current satellite ensemble DA tech-

niques should aid in the search for techniques that are

superior for satellite observations.

The theoretical basis for radiance space localization is

explored in section 2, and a conceptual 1D model that

exposes its essential limitations is presented in section 3.

In section 4, a more realistic 1D model is presented, with

levels, forecast error covariances, observation error co-

variances, and satellite weighting functions taken from

an operational global NWP system. Section 5 examines

the limit of small observation error variance for a hy-

pothetical radiometer with a sufficient number of chan-

nels to specify the analysis at each vertical level, and

section 6 presents a summary of 1D model results and

conclusions.

2. Theoretical basis for radiance space localization

The typical performance measure for a data assimila-

tion system for global NWP is the accuracy of long

forecasts, which depend on the analyses. The data as-

similation system must blend the information from a

short NWP model forecast with the information from

observations to produce a high-quality analysis. Specifi-

cally, the analysis is given by an NWP model forecast plus

the Kalman gain multiplied by the innovation vector. For

satellites, the innovation vector consists of differences

between radiance observations and radiance forecasts,

constructed by applying a radiative transfer model to the

NWP model state vector. In the context of an ensemble

Kalman filter, the Kalman gain Kj calculated by localizing

the sample covariance matrix Pj
f from ensemble j with

a correlation matrix r can be written (Houtekamer and

Mitchell 2001) as

KM
j 5 [(r 8 P

f
j )HT][H(r 8 P

f
j )HT 1 R]�1, (1)

where s denotes the Schur (elementwise) product, H is

the forward operator (for satellites, radiative transfer in

the vertical), and R is the observation error covariance

(typically diagonal). By the Schur product theorem

(Gaspari and Cohn 1999, hereafter GC99; Horn and

Johnson 1990, p. 458), if r is symmetric and positive

semidefinite, then r 8 Pj
f is a valid covariance matrix

(i.e., symmetric and positive semidefinite). We will refer

to (1) as the Kalman gain from model space localization,

because the localization matrix r is applied in the space

of the model state vector, and only subsequently is ra-

diative transfer applied. Following Houtekamer and

Mitchell (2001), the Kalman gain from observation

space localization is given by

KR
j 5 [r 8 (P

f
j H

T)][r 8 (HP
f
j H

T) 1 R]�1. (2)

We will refer to (2) as the Kalman gain from radiance

space localization in this study, although more generally

it is observation space localization.

Radiance space localization has one marked advan-

tage over model space localization: a significantly lower

operation count. The Schur product in model space re-

quires O(n2) operations, while the Schur product in

observation space requires O(np). Radiance space lo-

calization is more computationally efficient for global

NWP models because the size of the state vector is

n ; 108, two orders of magnitude larger than the typical

number of observations assimilated in a 6-h window

(i.e., p ; 106). In particular, (2) allows computationally
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efficient assimilation for serial observation processing

Kalman filters, which are commonly used (Anderson

2001; Whitaker and Hamill 2002; Houtekamer and

Mitchell 1998, 2001, 2005).

Equation (2), however, does not follow from (1) via

a formal limiting process or statistical argument, as Schur

products and matrix products are neither associative nor

commutative.1 In addition, a desirable property of any

approximation to the optimal gain matrix is that in the

limit of perfect observations and infinite ensemble size,

the analysis is equal to the truth. To see that (1) preserves

this property whereas (2) does not, note that if the

number of observed variables is equal to the number of

model variables, then the forward operator H is a square,

invertible matrix. Define the model-space localized

forecast error covariance matrix PM [ r 8 Pj
f. If the true

observations are given by yt 5 Hxt, then R is identically

zero, and we can write the analysis vector xa as

x
a

5 x
f
1 P

M
HT[HP

M
HT]�1 (y

t
� Hx

f
)

x
a

5 x
f
1 P

M
HT(HT)�1P�1

M H�1(y
t
� Hx

f
)

x
a

5 x
f
1 H�1(y

t
� Hx

f
) 5 H�1y

t
5 x

t
. (3)

No matter how imperfect the (positive definite) model-

space localization is, the analysis recovers the truth. For

radiance space localization, it is not even clear what the

analog to PM ought to be. Defining the representer

matrix implied by the denominator of (2) as HP1H
T [

r 8 (HPj
fHT) and the representer matrix implied by the

numerator of (2) as HP2H
T [ H[r 8 (Pj

fHT)], one can see

that P1 6¼ P2 for any nontrivial r, which is clearly an

undesirable property. A simple column model that

shows the consequences stemming from the radiance

space approximation is presented in the next section.

3. Conceptual 1D model

Here we consider a 1D model of atmospheric tem-

perature with three vertical levels, in order to illuminate

the difficulties that occur when localization is performed

in radiance space. Assume that the three levels are suf-

ficiently far apart so that the true forecast error co-

variance for temperature is the 3 3 3 identity matrix

(Daley and Barker 2001; Ingleby 2001). It follows that

the best localization function in model space is the 3 3 3

identity matrix, because a Schur product between it and

the forecast error covariance matrix correctly suppresses

any spurious T–T correlation between (far separated)

levels (i.e., a Schur product of the identity matrix and any

matrix A eliminates all off-diagonal elements of A).

Suppose further that we have a two-channel microwave

satellite instrument that senses temperature. The

weighting function for channel 1 was chosen to peak at the

top level, and have no contribution from the bottom level;

the weighting function for channel 2 was chosen to peak at

the middle level, and have contributions from all three

levels. More specifically, the first row of the forward op-

erator H, corresponding to channel 1, is [0.75, 0.25, 0.0],

and the second row of H, corresponding to channel 2, is

[0.25, 0.50, 0.25]. Assume that the observation error in

channel 1 is uncorrelated with that of channel 2 (a com-

mon assumption for real satellite instruments), and that

the observation error variances are equal (for conve-

nience). The observation error matrix R is then the 2 3 2

identity matrix, scaled by the observation error variance r.

The matrices R and Pf here are diagonal. Suppose

that, by chance, the ensemble sample covariance Pj
f was

precisely equal to the true forecast error covariance

matrix Pf. The gain matrix (evaluated analytically with

Mathematica 4.1; Wolfram Research, Inc. 2001) that

results from model space localization in (1) is then

identical to the true gain matrix, and is given by

KM
j 5

1 0 0

0 1 0

0 0 1

0
@

1
A

8 P
f
j

0
@

1
AHT

2
4

3
5 H

1 0 0

0 1 0

0 0 1

0
@

1
A

8 P
f
j

0
@

1
AHT 1 R

2
4

3
5
�1

5
4

35 1 256r(1 1 r)

13 1 48r � 5 1 16r

�4 1 16r 15 1 32r

�5 10 1 16r

0
@

1
A

0
r!0

1

35

52 � 20

�16 60

�20 40

0
@

1
A. (4)

The matrices HPj
fHT and Pj

fHT have nonzero off-diagonal

terms because the weighting functions of channels 1

and 2 overlap.2 To highlight the problems that occur

when the localization width is narrower than the

1 Equation (2) also has inconsistent notation; r is a p 3 p matrix in

observation space in the r 8 (HPj
fHT) term, but an n 3 p matrix in the

r 8 (Pj
fHT) term, as opposed to (1) where r is an n 3 n matrix (n is the

number of model state variables, and p is the number of observations).

2 For point measurements such as radiosonde temperatures,

however, HPj
fHT is simply interpolation to the nearest model level,

and (2) reduces to (1).
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observation weighting function, the radiance space lo-

calization matrix was chosen to be the projection of the

correct model space localization matrix into observation

space. The radiance space localization that follows from

(2) with r replaced by 3 3 2 and 2 3 2 identity matrices

yields the following gain matrix:

KR
j 5

1 0

0 1

0 0

0
B@

1
CA8 (P

f
j H

T)

2
64

3
75 1 0

0 1

� �
8 (HP

f
j HT) 1 R

� ��1

5
2

15 1 64r(1 1 r)

9 1 24r 0

0 10 1 16r

0 0

0
B@

1
CA0

r!0

1

15

18 0

0 20

0 0

0
B@

1
CA.

(5)

The gain matrix in (5) is diagonal, eliminating the

correct correlations between channels 1 and 2, even

though Pj
f was equal to Pf. Errors in the first guesses for

each of the two radiance channels are correlated using

(4), and uncorrelated using (5). The physical inter-

pretation of the nonzero third row of (4) is that both

radiance channels (correctly) influence the temperature

correction for the lowest model level; in contrast, the

third row of (5) is identically zero, which means that the

lowest model level is completely unconstrained by ob-

servations in either channel, regardless of how small the

observation error r is. Both channels affect the top and

middle levels in (4), whereas only channel 1 affects the

top level and only channel 2 affects the middle level in

(5); again, this result is independent of r.

It is clear that the correct model space localization is

too narrow when simply projected into radiance space.

One could use a much broader localization in (2) than

in (1), but in that case, spurious correlations would re-

main. It may be that in the vertical in radiance space

that there is no localization that is both sufficiently

broad and sufficiently narrow. In that case, we would

expect that (5) will not (on average) reduce the analysis

error as effectively as (4) for any nontrivial radiance

space localization.

4. Realistic 1D model with AMSU-A analog

A more realistic 1D model was constructed from the

30 vertical levels (surface up to 4 hPa) from the Navy

Operational Global Atmospheric Prediction System

(NOGAPS; Hogan and Rosmond 1991) and the

weighting functions for channels 6–11 (Fig. 1) of AMSU-A

(Saunders 1993; NOAA 2009, section 7.3). The obser-

vation error variances for AMSU-A are taken from

the operational version of the Naval Research Labora-

tory (NRL) Atmospheric Variational Data Assimilation

System (NAVDAS) at the Fleet Numerical Meteorol-

ogy and Oceanography Center (FNMOC). The forecast

error covariance is constructed from the forecast error

correlation and forecast error variance for temperature

used in NAVDAS (Daley and Barker 2001). For con-

venience, the forecast error variance for temperature is

assumed constant with height and equal to 1.0 K2 (ap-

proximately true according to Daley and Barker 2001).

In general, if the localization is too broad, spurious

correlations remain; if the localization is too narrow, true

correlations are reduced or eliminated. Examination of

the NAVDAS forecast error covariance for temperature

reveals that the correlation length scale varies with

height, implying that the localization width should also

vary with height. In keeping with previous studies, how-

ever, a constant localization width in log pressure was

chosen. In particular, the fifth-order piecewise rational

approximation of GC99 in log10 pressure (Fig. 2) was

used as the localization function in model space. GC99

guarantees a positive semidefinite localization, verified

by performing a Cholesky decomposition. Once a par-

ticular model space localization matrix r 5 L is chosen,

(1) becomes

KM
j 5 [(L 8 P

f
j )HT][H(L 8 P

f
j )HT 1 R]�1. (6)

Next, the localization in radiance space was constructed,

with each radiance observation assigned to the model

level closest to the peak of the satellite channel’s weighting

function (Houtekamer and Mitchell 2001) via a selector

matrix S. [Other level assignment schemes are discussed in

Fertig et al. (2007) and Miyoshi and Sato (2007), both in

the context of the local ensemble transform Kalman filter

(LETKF).] Level assignment defines a distance in radiance

space, an answer to the question of ‘‘How far is channel 1

from channel 2?’’ The localization matrix in radiance space

is given by SLST, and (2) becomes

KR
j 5 [(LST) 8 (P

f
j HT)][(SLST) 8 (HP

f
j H

T) 1 R]�1. (7)

Analysis error reduction resulting from the gain matri-

ces in (6) and (7) can then be compared with the optimal

analysis error reduction.

The optimal analysis error reduction was computed by

assuming that the NAVDAS forecast error covariance is
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the true forecast error covariance. An observed radiance

in each of the six simulated AMSU-A channels was

constructed by summing the satellite weighting functions

multiplied by the true forecast temperature (arbitrarily

set to 08C at each level), and adding random noise with

variance equal to the prescribed observation error vari-

ance. The forecast temperature perturbations are given

by the product of the left square root of the NAVDAS

forecast error covariance matrix and a random normal

vector N(0, I). The forecast radiance perturbations can be

computed simply by summing the product of the satellite

weighting functions and the forecast temperature per-

turbation at each model level, because microwave radi-

ative transfer is approximately linear, and none of the

channels chosen has significant contributions from the

surface. [All of the arguments in this study apply equally

well to any integrated measure, regardless of nonlinearity;

our expectation is that the problems with radiance local-

ization would be exacerbated for instruments such as the

Special Sensor Microwave Imager (SSM/I), AMSU-B, the

Microwave Humidity Sounder (MHS), the Tropical Rain-

fall Measuring Mission (TRMM) Microwave Imager

(TMI), the Atmospheric Infrared Sounder (AIRS), the In-

frared Atmospheric Sounding Interferometer (IASI), and

the Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E). Additionally, AMSU-A

remains the instrument with the most global forecast

impact in the Var systems at many global NWP centers,

so EnKFs need to be able to handle AMSU-A radiances

well.] Subtracting the forecast from the observations

forms the innovation vector, consisting of a brightness

temperature difference in each channel. A total of 100 000

trials were performed for four different ensemble sizes

(8, 16, 32, and 64 members) and 7 values for error vari-

ance in channel 9 (101, 100, 1021, 1022, 1023, 1024, and

1025), with 1021 observation error variance correspond-

ing most closely to FNMOC operations (the observation

error standard deviations in channels other than channel

9 were kept proportional to the channel 9 value). For each

trial, a random forecast error vector e f and an observation

error vector eo are generated. The innovation vector can

then be formed as eo 2 He f 5 (y 2 yt) 2 H(xf 2 xt) 5 y 2

Hxf. A sample error covariance matrix is constructed

from the ensemble, and the localization methods are

applied. The mean square analysis error normalized by

the mean square forecast error, averaged over all trials,

is plotted against the log of the observation error vari-

ance for each ensemble size (Fig. 3). The 99% confi-

dence intervals are shown for a raw EnKF, an EnKF

localized in model space in (6), an EnKF localized in

radiance space in (7), and the optimal Kalman filter. As

the optimal localization width might easily be a function

of observation error, ensemble size, and localization

method, each point in Fig. 3 has had the localization

FIG. 1. AMSU-A weighting functions for channels 6–11 projected

onto the 30 levels of NOGAPS.

FIG. 2. GC99 fifth-order piecewise rational localization function

for NOGAPS levels 5 and 20 (blue), NAVDAS forecast error

correlation for temperature at levels 5 and 20 (red), and the re-

sulting localized error covariance at levels 5 and 20 (black). The

localization half-width is c 5 0.40 in log10 pressure (hPa).
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width tuned (Table 1) to produce the lowest analysis

error.3 The raw EnKF (green curve) makes the analysis

worse than the forecast when the number of ensemble

members is less than the dimension of the state vector

(i.e., 30). These rank-deficient cases are the most rele-

vant to 4D EnKFs for global atmospheric data assimi-

lation, as there are far fewer ensemble members than

state vector variables. The EnKF localized in model

space (red curve) significantly outperforms the EnKF

localized in radiance space (cyan curve) in the mean for

all ensemble sizes and all observation error variances

less than 10 times the forecast error variance.4 The the-

oretical best result (dark blue curve) converges quickly

to approximately 0.72 as the observations are made

more accurate. The reason that it does not converge to

0 is that 6 perfect observations are insufficient to specify

the 30-level model state. Results from experiments with

FIG. 3. Normalized mean analysis error as a function of ensemble size and the log of observation error variance after assimilating a 6-

channel analog of AMSU-A on the 30 NOGAPS levels with the NAVDAS forecast error covariance for temperature taken as truth.

Observation error variance in each channel is proportional to the values used in the operational NAVDAS; the Ops arrow corresponds to

the actual set of values used in operations. Results with 99% confidence intervals for 100 000 trials are shown for optimal data assimilation

(dark blue), a raw EnKF (green), an EnKF localized in model space (red), and an EnKF localized in radiance space (cyan).

3 Note that model space localization is much less sensitive to

tuning than radiance space localization, and that the broad radi-

ance space localizations appropriate for radiances will not be op-

timal for radiosondes.

4 For the largest observation error variance shown, even the

theoretical best method makes a negligible contribution to analysis

error reduction. However, radiance space localization does per-

form slightly better than model space localization in this regime,

and we do not currently have an explanation for this behavior.
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sufficient observations to specify the model state are

presented in the next section.

5. Realistic 1D model with idealized microwave
instrument

Given as many independent satellite radiances as

vertical levels, the analysis error should tend to zero as

the observation error variance tends to zero. The ex-

periments in section 4 were repeated with a synthetic

30-channel satellite instrument. The satellite weighting

functions were chosen to be approximately Gaussian,

peaking at the 30 NOGAPS levels, and decaying to

0 within 63 model levels (not shown). In total, 10 000

trials were performed for 6 different ensemble sizes

(8, 12, 16, 20, 24, and 28) and 8 different observation

error variances (101, 100, 1021, 1022, 1023, 1024, 1025,

and 1026) with each hypothetical channel having equal

observation error variance. Normalized analysis error

variance is plotted against the log of the observation

error variance for the 16-member ensemble, and 99.9%

confidence intervals are shown (Fig. 4) for a raw EnKF,

an EnKF localized in model space in (6), an EnKF lo-

calized in radiance space in (7), and the optimal Kalman

filter. As the observation error variance is reduced, the

average analysis error variance for both the optimal

filter (dark blue) and model space localized EnKF (red)

converges to 0, while the radiance space localized EnKF

(cyan) plateaus at 0.27, significantly above 0. Model

space localization produced a smaller analysis error than

radiance space localization 73% of the time for obser-

vation error variances equal to 1021, and 100% of the

time for observation error variances equal to 1025 or

less (Fig. 5).

To ensure that the results were not due to lack of

tuning, a further set of experiments were performed,

varying the half-width of the GC99 rational function

from 0.1 to 1.2 for radiance space localization. The op-

timal half-width for the 16-member ensemble for the

smallest observation error variance was found to be

0.88 rather than 0.40; however, the resulting analyses

improved only slightly, reaching a minimum average

analysis error variance of 0.24. At the lowest observa-

tional error variance tested, the optimally tuned radi-

ance space localization in (7) was inferior to the untuned

model space localization in (6) for all 10 000 trials.

6. Summary and conclusions

Although studies (e.g., Houtekamer and Mitchell

2005) have shown that useful information can be ex-

tracted from satellite radiances using radiance space lo-

calization, the simple examples presented here indicate

that more improvement is possible. Two problems with

FIG. 4. Normalized mean analysis error for a 16-member ensem-

ble as a function of the log of observation error variance. A hypo-

thetical 30-channel instrument is assimilated with the NAVDAS

forecast error covariance for temperature taken as truth. Results

with 99.9% confidence intervals for 10 000 trials are shown for op-

timal data assimilation (dark blue), a raw EnKF (green), an EnKF

localized in model space (red), and an EnKF localized in radiance

space (cyan).

TABLE 1. Empirical optimal localization widths in log10 pressure

(hPa) as a function of ensemble size, localization type (model space

and radiance space), and observation error standard deviation.

Obs error std dev 3.16 1.0 0.316 0.1 0.0316 0.01 0.00316

Model 8 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Model 16 0.6 0.3 0.2 0.2 0.2 0.1 0.1

Model 32 0.8 0.5 0.3 0.3 0.3 0.2 0.2

Model 64 0.7 0.7 0.6 0.5 0.5 0.5 0.5

Radiance 8 0.3 0.3 0.3 0.3 0.4 0.4 0.4

Radiance 16 0.4 0.4 0.6 0.7 0.8 0.8 0.9

Radiance 32 0.4 0.7 0.9 1.1 1.3 1.6 1.5

Radiance 64 0.7 0.8 1.3 1.4 2.0 2.3 2.3
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distance-based radiance space localization in the vertical

have been highlighted: 1) distance and location are not

well defined for integrated measures and 2) broad sat-

ellite weighting functions force localization functions to

either be so broad that they are ineffective, or so narrow

that true interchannel error covariances are suppressed

or eliminated. In experiments with 1D models based

on the NAVDAS forecast error covariance model, ra-

diance space localization produced analyses that were

systematically worse than those produced by model

space localization for all observation error variances less

than 10 times the forecast error variance, including

a case with typical values used in the operational data

assimilation of AMSU-A at FNMOC. Finally, radiance

space localization is incapable of recovering the true

state with a sufficient set of radiance channels and van-

ishingly small observation error, which is not surprising

given that (2) was not derived by a formal limit pro-

cedure from (1). As there are existing ensemble data

assimilation methods that do not require radiance space

covariance localization (e.g., Buehner 2005; Bishop and

Hodyss 2009), we recommend that users carefully weigh

the computational performance gains they expect rela-

tive to the drawbacks demonstrated here.
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Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure

of short-range forecast errors as determined from radiosonde

data. Part I: The wind field. Tellus, 38A, 111–136.

Horn, R. A., and C. R. Johnson, 1990: Matrix Analysis. Cambridge

University Press, 575 pp.

FIG. 5. Percentage of trials where model space localization yields

a lower analysis error variance than radiance space localization as

a function of the log of observation error variance for a 16-member

ensemble for the hypothetical 30-channel radiometer.

JANUARY 2010 N O T E S A N D C O R R E S P O N D E N C E 289



Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation

using an ensemble Kalman filter technique. Mon. Wea. Rev.,

126, 796–811.

——, and ——, 2001: A sequential ensemble Kalman filter for at-

mospheric data assimilation. Mon. Wea. Rev., 129, 123–137.

——, and ——, 2005: Ensemble Kalman filtering. Quart. J. Roy.

Meteor. Soc., 131, 3269–3289.

——, ——, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and

B. Hansen, 2005: Atmospheric data assimilation with an en-

semble Kalman filter: Results with real observations. Mon.

Wea. Rev., 133, 604–620.

Ingleby, N. B., 2001: The statistical structure of forecast errors and its

representation in The Met. Office global 3-D variational data

assimilation scheme. Quart. J. Roy. Meteor. Soc., 127, 209–231.

Kelly, G. A., 1997: Influence of observations on the operational

ECMWF system. Tech. Proc. Ninth Int. TOVS Study Conf.,

Igls, Austria, European Centre for Medium-Range Weather

Forecasts, 239–244.

Keppenne, C. L., 2000: Data assimilation into a primitive-equation

model with a parallel ensemble Kalman filter. Mon. Wea. Rev.,

128, 1971–1981.

Miyoshi, T., and Y. Sato, 2007: Assimilating satellite radiances with

a local ensemble transform Kalman filter (LETKF) applied to

the JMA global model (GSM). SOLA, 3, 37–40.

NOAA, 2009: KLM user’s guide with NOAA-N,-N’ supplement.

[Available online at http://www2.ncdc.noaa.gov/docs/klm/

index.htm.]

Saunders, R. W., 1993: Note on the Advanced Microwave Sound-

ing Unit. Bull. Amer. Meteor. Soc., 74, 2211–2212.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation

without perturbed observations. Mon. Wea. Rev., 130, 1913–1924.

Wolfram Research, Inc., 2001: Mathematica, version 4.1.

290 M O N T H L Y W E A T H E R R E V I E W VOLUME 138



Copyright of Monthly Weather Review is the property of American Meteorological Society and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


